hermal bridging
New research shows that thermal bridging through insulation is a much more serious problem than previously suspected. Continuous insulation (ci) outbound of the studs is the accepted solution. Code-writers have taken note and change is coming. For example, in the International Energy Conservation Code (IECC), Table C402.1.2 provides the total U-value of the opaque wall area including continuous insulation. It also references the American Society of Heating, Refrigeration, and Air-conditioning Engineers (ASHRAE) 90.1, Energy Standard for Buildings Except Low-rise Residential Buildings. If ASHRAE 90.1 is modified to include linear transmittance, as described in this article, then there will be significant change in the way buildings are designed.
In some ways, the new battlefront in construction will be energy whatsapp number database conservation versus gravity. Thermal bridging needs to be eliminated, but something has to hold the cladding on the building. In all methods of construction, the cladding dead load has to be secured to the structure through the ‘continuous’ insulation.
It could be adhesive, as is the case for exterior insulation and finish systems (EIFS). However, screws with washers are often used to secure the insulation to the supporting structure. Typically, for thermal energy calculations, the diameter of the screw shaft can be compared to the insulation area, yielding a thermal bridge ratio of about 0.05 percent—an apparently insignificant amount. In fact, a thermally conductive shaft transmits heat from an area many times larger than its diameter.
What holds the insulation in place?
-
- Posts: 38
- Joined: Thu May 22, 2025 5:47 am